如图甲,直角梯形ABCD中,AB∥CD,∠DAB=,点M、N分别在AB,CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,现将梯形ABCD沿MN折起,使平面AMN

发布时间:2020-07-31 09:14:41

如图甲,直角梯形ABCD中,AB∥CD,∠DAB=,点M、N分别在AB,CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,现将梯形ABCD沿MN折起,使平面AMND与平面MNCB垂直(如图乙).
(1)求证:AB∥平面DNC;
(2)当DN的长为何值时,二面角D-BC-N的大小为30°?

网友回答

解:(1)证明:∵MB∥NC,MB?平面DNC,NC?平面DNC,
∴MB∥平面DNC.
同理MA∥平面DNC,又MA∩MB=M,且MA、MB?AB∥平面DNC.
(2)过N作NH⊥BC交BC延长线于H,


∵平面AMND⊥平面MNCB,DN⊥MN,
∴DN⊥平面MBCN,从而DH⊥BC,
∴∠DHN为二面角D-BC-N的平面角.
由MB=4,BC=2,∠MCB=90°知∠MBC=60°,
CN=4-2cos60°=3,∴NH=3sin60°=.
由条件知:tan∠NHD=,
∴DN=NH
解析分析:(1)证明AB所在平面MAB与平面DNC平行,即可证明AB∥平面DNC;(2)过N作NH⊥BC交BC延长线于H,说明∠DHN为二面角D-BC-N的平面角,利用二面角D-BC-N的大小为30°,求出DN的长.

点评:本题考查直线与平面平行的判定,二面角及其度量,考查逻辑思维能力,空间想象能力,计算能力,是中档题.也可以通过空间直角坐标系的方法解答本题.
以上问题属网友观点,不代表本站立场,仅供参考!