正方形ABCD的对角线AC、BD相交于点O,E是BC中点,DE交AC于F,若DE=12,则EF等于A.8B.6C.4D.3
网友回答
C
解析分析:先根据题意画出图形,因为四边形ABCD是正方形,E是BC中点,所以CE=AD,由相似三角形的判定定理得出△CEF∽△ADF,再根据相似三角形的对应边成比例可得出==,再根据DF=DE-EF即可得出EF的长.
解答:解:如图所示:∵四边形ABCD是正方形,E是BC中点,∴CE=AD,∵AD∥BC,∴∠ADF=∠DEC,∠AFD=∠EFC,∴△CEF∽△ADF,∴==,=,即=,解得EF=4.故选C.
点评:本题考查的是相似三角形的判定与性质及正方形的性质,先根据题意判断出△CEF∽△ADF,再根据相似三角形的对应边成比例进行解答是解答此题的关键.