在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,求∠EFD的度数.

发布时间:2020-07-30 03:11:49

在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,求∠EFD的度数.

网友回答

解:∵将△BCE绕点C顺时针方向旋转90°得到△DCF,
∴△BCE≌△DCF,
∴CE=CF,∠BEC=∠DFC=60°,
∵四边形ABCD是正方形,
∴∠BCD=∠DCF=90°,
∴∠EFC=∠CEF,
∵∠EFC+∠CEF+90°=180°,
∴∠EFC=∠CEF=45°,
∴∠EFD=60°-45°=15°.
解析分析:根据旋转的性质得出△BCE≌△DCF,推出CE=CF,∠BEC=∠DFC=60°,根据∠BCD=∠DCF=90°,求出∠EFC=∠CEF=45°,即可求出
以上问题属网友观点,不代表本站立场,仅供参考!