如图,在平面直角坐标系中,已知点A(a,0),B(0,b),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是A.(-b,b+a)B.(-b,b-a)C.(

发布时间:2020-07-30 15:19:28

如图,在平面直角坐标系中,已知点A(a,0),B(0,b),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是A.(-b,b+a)B.(-b,b-a)C.(-a,b-a)D.(b,b-a)

网友回答

B

解析分析:过点C作CD⊥y轴于点D,根据旋转的性质可以证明∠CBD=∠BAO,然后证明△ABO与△BCD全等,根据全等三角形对应边相等可得BD、CD的长度,然后求出OD的长度,最后根据点C在第二象限写出坐标即可.

解答:解:如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(a,0),B(0,b),∴CD=b,BD=a,∴OD=OB-BD=b-a,又∵点C在第二象限,∴点C的坐标是(-b,b-a).故选B.

点评:本题主要考查了旋转的性质,坐标与图形的关系,作出辅助线利用全等三角形求出BD、CD的长度是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!