已知函数f(x)=x3+ax2+bx+c,在定义域x∈[-2,2]上表示的曲线过原点,且在x=±1处的切线斜率均为-1.有以下命题:①f(x)是奇函数;②若f(x)在[s,t]内递减,则|t-s|的最大值为4;③f(x)的最大值为M,最小值为m,则M+m=0.④若对?x∈[-2,2],k≤f'(x)恒成立,则k的最大值为2.其中正确命题的个数有
A.1个
B.2个
C.3个
D.4个
网友回答
B解析分析:首先利用导数的几何意义及函数f(x)过原点,列方程组求出f(x)的解析式;然后根据奇函数的定义判断函数f(x)的奇偶性,且由f′(x)的最小值求出k的最大值,则命题①④得出判断;最后令f′(x)=0,求出f(x)的极值点,进而求得f(x)的单调区间与最值,则命题②③得出判断.解答:函数f(x)=x3+ax2+bx+c的图象过原点,可得c=0;又f′(x)=3x2+2ax+b,且f(x)在x=±1处的切线斜率均为-1,则有,解得a=0,b=-4.所以f(x)=x3-4x,f′(x)=3x2-4.①可见f(x)=x3-4x是奇函数,因此①正确;x∈[-2,2]时,[f′(x)]min=-4,则k≤f'(x)恒成立,需k≤-4,因此④错误.②令f′(x)=0,得x=±.所以f(x)在[-,]内递减,则|t-s|的最大值为,因此②错误;且f(x)的极大值为f(-)=,极小值为f()=-,两端点处f(-2)=f(2)=0,所以f(x)的最大值为M=,最小值为m=-,则M+m=0,因此③正确.故选B.点评:本题主要考查导数的几何意义及利用导数研究函数单调性、最值的方法.