已知函数,那么下面结论正确的是
A.f(x)在[0,x0]上是减函数
B.f(x)在[x0,π]上是减函数
C.?x∈[0,π],f(x)>f(x0)
D.?x∈[0,π],f(x)≥f(x0)
网友回答
B解析分析:由函数的解析式f(x)=sinx-x可求其导数f′(x)=cosx-,又余弦函数在[0,π]上单调递减,判断导数在[x0,π]上的正负,再根据导数跟单调性的关系判断函数的单调性.解答:∵f(x)=sinx-x∴f′(x)=cosx-????∵cosx0=,x0∈[0,π]又∵余弦函数y=cosx在区间[0,π]上单调递减????? ∴当x>x0时,cosx<cosx0 即cosx<∴当x>x0时,f′(x)=cosx-<0???∴f(x)=sinx-x在[x0,π]上是减函数.故选B.点评:利用导数判断函数的单调性,一定要注意其方法及步骤.(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)在f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)写出f(x)的单调区间.