解答题已知数列{an}中,a2=1,前n项和为Sn,且.
(1)求a1,a3;
(2)求证:数列{an}为等差数列,并写出其通项公式;
(3)设,试问是否存在正整数p,q(其中1<p<q),使b1,bp,bq成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.
网友回答
(1)解:令n=1,则a1=S1==0,
令n=3,则,即0+1+a3=,解得a3=2;???
(2)证明:由,即①,得②,
②-①,得(n-1)an+1=nan?③,
于是,nan+2=(n+1)an+1?④,
③+④,得nan+2+nan=2nan+1,即an+2+an=2an+1,
又a1=0,a2=1,a2-a1=1,
所以数列{an}是以0为首项,1为公差的等差数列.
所以an=n-1.??????????????????????????????????????????
(3)假设存在正整数数组(p,q),使b1,bp,bq成等比数列,
则lgb1,lgbp,lgbq成等差数列,
于是,.???????????????????????????????????????
所以,(☆).易知(p,q)=(2,3)为方程(☆)的一组解.????
当p≥3,且p∈N*时,<0,
故数列{}(p≥3)为递减数列??????????????????????????????????????
于是≤<0,所以此时方程(☆)无正整数解.??????
综上,存在唯一正整数数对(p,q)=(2,3),使b1,bp,bq成等比数列.解析分析:(1)在中,分别令n=2,n=3即可求得