如图,实线部分的月牙形公园是由圆P上的一段优弧和圆Q上的一段劣弧围成,圆P和圆Q的半径都是2km,点P在圆Q上,现要在公园内建一块顶点都在圆P上的多边形活动场地.(1

发布时间:2020-07-31 19:53:45

如图,实线部分的月牙形公园是由圆P上的一段优弧和圆Q上的一段劣弧围成,圆P和圆Q的半径都是2km,点P在圆Q上,现要在公园内建一块顶点都在圆P上的多边形活动场地.
(1)如图甲,要建的活动场地为△RST,求场地的最大面积;

(2)如图乙,要建的活动场地为等腰梯形ABCD,求场地的最大面积.

网友回答

解:(1)如下右图,
过S作SH⊥RT于H,
S△RST=.(2分)
由题意,△RST在月牙形公园里,
RT与圆Q只能相切或相离;(4分)
RT左边的部分是一个大小不超过半圆的弓形,
则有RT≤4,SH≤2,
当且仅当RT切圆Q于P时(如下左图),上面两个不等式中等号同时成立.
此时,场地面积的最大值为S△RST==4(km2).(6分)
甲图乙图
(2)同(1)的分析,要使得场地面积最大,AD左边的部分是一个大小不超过半圆的弓形,
AD必须切圆Q于P,再设∠BPA=θ,则
SABCD=(AD+BC)×2sinθ=(4+2×2cosθ)×2sinθ.
=4(sinθ+sinθcosθ)…(8分)
令y=sinθ+sinθcosθ,则
y'=cosθ+cosθcosθ+sinθ(-sinθ)=2cos2θ+cosθ-1.(11分)
若y'=0,,
又时,y'>0,时,y'<0,(14分)
函数y=sinθ+sinθcosθ在处取到极大值也是最大值,
故时,场地面积取得最大值为(km2).(16分)
解析分析:(1)先过S作SH⊥RT于H,则有:S△RST=,由题意知:△RST在月牙形公园里,RT与圆Q只能相切或相离,RT左边的部分是一个大小不超过半圆的弓形,建立不等关系:RT≤4,SH≤2,当且仅当RT切圆Q于P时(如下左图),上面两个不等式中等号同时成立.从而得出场地面积的最大值即可;(2)同(1)的分析,要使得场地面积最大,AD左边的部分是一个大小不超过半圆的弓形,AD必须切圆Q于P,再设∠BPA=θ,写出等腰梯形ABCD面积的表达式,再利用导数求得其极大值也是最大值即可.

点评:本题主要考查了在实际问题中建立三角函数模型.解题的关键是利用三角函数这个数学模型,建立函数关系式,最后利用导数知识求最值.
以上问题属网友观点,不代表本站立场,仅供参考!