如图所示,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P为BC的中点,过P作BC的垂线交OA于点D.∠MON=60°,则∠BDC=A.120°B.130°C.140°D.150°
网友回答
A
解析分析:首先由P为BC的中点,过P作BC的垂线交OA于点D得出BD=CD,再过点D作∠MON两边的垂线交两边于点E和F,则DE=DF,则Rt△DEB≌Rt△DFC,得∠BDE=∠CDF,通过等量代换得∠BDC=∠EDF,由已知∠MON=60°,得出∠EDF=120°,即∠BDC=120°.
解答:解:已知P为BC的中点,DP⊥BC,∴BD=CD,过点D作∠MON两边的垂线交两边于点E和F,则DE=DF,在Rt△DEB和Rt△DFC中,BD=CD,DE=DF,∴Rt△DEB≌Rt△DFC,∴∠BDE=∠CDF,∠BDC=∠BDF+∠CDF,∠EDF=∠BDF+∠BDE,∴∠BDC=∠EDF,已知∠MON=60°,∴∠EDF=360°-90°-90°-∠MON=120°,即∠BDC=120°,故选:A.
点评:此题由角平分线性质和证明三角形全等得出∠BDC=∠EDF是关键.