如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是A.AC=BDB.OB=OCC.∠BCD=∠BDCD.∠ABD=∠ACD
网友回答
C
解析分析:由四边形ABCD是等腰梯形,根据等腰梯形的两条对角线相等,即可得AC=BD;易证得△ABC≌△DCB,即可得OB=OC;由∠ABC=∠DCB,∠ACB=∠DBC,即可得∠ABD=∠ACD.注意排除法在解选择题中的应用.
解答:A、∵四边形ABCD是等腰梯形,∴AC=BD,故本选项正确;B、∵四边形ABCD是等腰梯形,∴AB=DC,∠ABC=∠DCB,在△ABC和△DCB中,∵,∴△ABC≌△DCB(SAS),∴∠ACB=∠DBC,∴OB=OC,故本选项正确;C、∵无法判定BC=BD,∴∠BCD与∠BDC不一定相等,故本选项错误;D、∵∠ABC=∠DCB,∠ACB=∠DBC,∴∠ABD=∠ACD.故本选项正确.故选C.
点评:此题考查了等腰梯形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.此题难度不大,注意数形结合思想的应用.