如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是A.等腰梯形B.矩

发布时间:2020-07-29 23:45:17

如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是A.等腰梯形B.矩形C.菱形D.正方形

网友回答

C

解析分析:连接四边形ADCB的对角线,通过全等三角形来证得AC=BD,从而根据三角形中位线定理证得四边形NPQM的四边相等,可得出四边形MNPQ是菱形.

解答:解:连接BD、AC;∵△ADE、△ECB是等边三角形,∴AE=DE,EC=BE,∠AED=∠BEC=60°;∴∠AEC=∠DEB=120°;∴△AEC≌△DEB;∴AC=BD;∵M、N是CD、AD的中点,∴MN是△ACD的中位线,即MN=AC;同理可证得:NP=DB,QP=AC,MQ=BD;∴MN=NP=PQ=MQ,∴四边形NPQM是菱形;故选C.

点评:此题主要考查的是菱形的判定方法,能发现并构建出全等三角形,是解答本题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!