下列说法正确的是
A.定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上是增函数
B.定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数
C.y=tanx在定义域上是增函数
D.若f(x+1)是奇函数,则f(-x-1)=-f(x+1)
网友回答
B解析分析:定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不一定是增函数;定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数;y=tanx的增区间是(-,);若f(x+1)是奇函数,则f(-x+1)=-f(x+1).解答:定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不一定是增函数,故A不正确;定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数,故B正确;y=tanx的增区间是(-,),故C不正确;若f(x+1)是奇函数,则f(-x+1)=-f(x+1),故D不正确.故选B.点评:本题考查复合命题的真假判断,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.