下列命题:①若a>b>0,则以2,a-b,a+b为三边的三角形是直角三角形;②用长为4、5、7、8的四条线段作边,其中以5、8作底可以作梯形;③等边三角形是轴对称图形

发布时间:2020-07-30 08:55:47

下列命题:
①若a>b>0,则以2,a-b,a+b为三边的三角形是直角三角形;②用长为4、5、7、8的四条线段作边,其中以5、8作底可以作梯形;③等边三角形是轴对称图形,但不是中心对称图形;④有两边和第三边上的高对应相等的两个三角形全等.其中假命题的个数是A.1个B.2个C.3个D.4个

网友回答

B
解析分析:要判断一个命题是假命题,可以举反例,本题还可以根据已知定理,结合题设选出正确命题,从而利用排除法得出正确选项.

解答:①∵a>b>0,(2)2+(a-b)2=(a+b)2,由勾股定理的逆定理可知,以2,a-b,a+b为三边的三角形是直角三角形,∴该命题是真命题,故选项错误;②如图,假设梯形ABCD作出,AD=5,BC=8,AB=4,DC=7,过D作DE∥AB交BC于E,在△DEC中,DE=AB=4,EC=BC-BE=8-5=3,CD=7,此时DE+EC=DC,与三角形三边关系定理矛盾,∴该命题是假命题,故选项正确;③等边三角形是轴对称图形,但不是中心对称图形,是真命题,故选项错误;④如图,在△ABD与△ABC中,AB=AB,AD=AC,高AE=AE,但△ABD与△ABC不全等.所以有两边和第三边上的高对应相等的两个三角形全等是假命题,故选项正确.所以假命题共有2个.故选B.

点评:本题主要考查了勾股定理的逆定理,三角形三边关系定理,等边三角形的对称性,全等三角形的判定.
以上问题属网友观点,不代表本站立场,仅供参考!