填空题关于函数.有下列三个结论:①f(x)的值域为R;②f(x)是R上的增函数;③f(

发布时间:2020-07-09 06:52:55

填空题关于函数.有下列三个结论:①f(x)的值域为R;②f(x)是R上的增函数;③f(x)的图象是中心对称图形,其中所有正确命题的序号是________.

网友回答

①②③解析分析:先判定函数的单调性,利用增函数与减函数作差为增函数进行判定②的真假,然后根据单调性求函数的值域可判定①的真假,③是考查函数的奇偶性的,要判断是否关于原点对称,须看是否为奇函数,须用定义.解答:因为y=2x在R上是增函数,且y=2-x在R上是减函数,所以f(x)=2x-2-x在R上是增函数,所以②对,f(x)=2x-2-x在R上是增函数当x→-∞则y→-∞,当x→+∞则y→+∞,则f(x)的值域为R,所以①对因为f(x)=2x-2-x,故f(-x)=2-x-2x=-f(x),则f(x)为奇函数,f(x)的图象是中心对称图形,所以③对,故
以上问题属网友观点,不代表本站立场,仅供参考!