如图,⊙O的半径为1,PA切⊙O于点A,连接OA,OP交⊙O于点D,且∠APO=30°,弦AB⊥OP于点C,则图中阴影部分面积等于A.B.C.D.
网友回答
A
解析分析:由PA是半径为1的⊙O的切线,得到OA⊥PA,而∠APO=30°,∠POA=90°-30°=60°,而OP垂直平分AB,得到S△AOC=S△BOC,从而得到S阴影部分=S扇形OAD,然后根据扇形的面积公式计算即可.
解答:∵PA是半径为1的⊙O的切线,∴OA⊥PA,而∠APO=30°,∠POA=90°-30°=60°,又∵OP垂直平分AB,∴△AOC≌△BOC,∴S△AOC=S△BOC,∴S阴影部分=S扇形OAD==.故选A.
点评:本题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径),或S=lR,l为扇形的弧长,R为半径.也考查了切线的性质.