已知x(X不等于零)对于对f(x-1/2)=1/2+√ {f(x)-f^2(x)}都成立,求证f:(

发布时间:2021-02-18 20:23:21

已知x(X不等于零)对于对f(x-1/2)=1/2+√ {f(x)-f^2(x)}都成立,求证f:(x)为周期函数√ {f(x)-f^2(x)}表示{}内的要开方;^2表示平方现在更正为:已知一切x(x不等于零的数)对于函数f(x+1/2)=1/2+√{f(x)-f^2(x)}都成立,求证f (x)为周期函数说明:√{f(x)-f^2(x)}表示{}内的要开方;^2表示平方

网友回答

说明:【】表示开根号,^2表示平方
证明:  ∵    f(x+1/2)=1/2+【f(x)-f^2(x)】
  ∴ f(x+1/2)-1/2=【f(x)-f^2(x)】
     f(x+1/2)-1/2≥0                                                             结论(1)
    
    
设x'=x-1/2,那么根据题意得:    
    f(x')=f(x-1/2+1/2)=1/2+【f(x-1/2)-f^2(x-1/2)】    
                f(x)=1/2+【f(x-1/2)-f^2(x-1/2)】      结论(2)   ∵   f(x+1/2)=1/2+【f(x)-f^2(x)】
  ∴   把结论(2)代入得到:
    
  f(x+1/2)=1/2+【f(x)-f^2(x)】    
         =1/2+【1/2+【f(x-1/2)-f^2(x-1/2)】-(1/2+【f(x-1/2)-f^2(x-1/2)】)^2】    
         =1/2+【1/2+【f(x-1/2)-f^2(x-1/2)】-(1/4+【f(x-1/2)-f^2(x-1/2)】+(【f(x-1/2)-f^2(x-1/2)】)^2)】    
         =1/2+【1/2+【f(x-1/2)-f^2(x-1/2)】-1/4-【f(x-1/2)-f^2(x-1/2)】-f(x-1/2)+f^2(x-1/2)】    
         =1/2+【1/4-f(x-1/2)+f^2(x-1/2)】      又 ∵ 已经求得结论(1) :f(x+1/2)-1/2≥0 ∴           =1/2+【(f(x-1/2)-1/2)^2】        
         =1/2+f(x-1/2)-1/2    
                   =f(x-1/2)   ∴   f(x+1/2) =f(x-1/2)                                                        结论(3)
   再设X''=x+1/2,将其代入结论(3)中得:
    
        f(X''+1/2) =f(X''-1/2)      
以上问题属网友观点,不代表本站立场,仅供参考!