如图,A、D、B三点在同一直线上,△ADC、△BDO为等腰直角三角形,连接AO、BC.(1)AO、BC的大小位置关系如何?说出你的看法,并证明你的结论.(2)当△OD

发布时间:2020-07-29 16:10:39

如图,A、D、B三点在同一直线上,△ADC、△BDO为等腰直角三角形,连接AO、BC.

(1)AO、BC的大小位置关系如何?说出你的看法,并证明你的结论.
(2)当△ODB绕顶点D旋转任一角度得到如图②,(1)中的结论是否仍然成立?请说明理由.

网友回答

(1)AO=BC,AO⊥BC,
证明:∵△ADC、△BDO为等腰直角三角形,
∴∠ADO=∠CDB=90°,AD=DC,DO=BD,
∵在△ADO和△CDB中,

∴△ADO≌△CDB(SAS),
∴AO=BC,∠OAD=∠DCB,
∵∠COE=∠AOD,∠AOD+∠OAD=90°,
∴∠DCB+∠COE=90°,
∴∠CEO=90°,
∴AO⊥BC;


(2)解:AO=BC仍成立,
理由是:∵△ADC、△BDO为等腰直角三角形,
∴AD=DC,DO=BD,∠ADC=∠BDO=90°,
∴∠ADC+∠CDO=∠BDO+∠CDO,
∴∠ADO=∠CDB,
∵在△ADO和△CDB中,

∴△ADO≌△CDB(SAS),
∴AO=BC.
解析分析:(1)根据等腰直角三角形性质得出∠ADO=∠CDB=90°,AD=DC,DO=BD,根据SAS推出△ADO≌△CDB即可;(2)根据等腰直角三角形性质得出∠ADC=∠BDO=90°,AD=DC,DO=BD,求出∠ADO=∠CDB根据SAS推出△ADO≌△CDB即可;

点评:本题考查了等腰直角三角形性质和全等三角形的性质和判定,解此题的关键是根据SAS得到△ADO≌△CDB.
以上问题属网友观点,不代表本站立场,仅供参考!