不论k为何值时,一次函数(2k-1)x-(k+3)y-(k-11)=0的图象恒过一定点,则这个定点坐标为________.

发布时间:2020-07-30 02:18:27

不论k为何值时,一次函数(2k-1)x-(k+3)y-(k-11)=0的图象恒过一定点,则这个定点坐标为________.

网友回答

(2,3)

解析分析:将一次函数(2k-1)x-(k+3)y-(k-11)=0,整理为(2x-y)k-(x+3y)=k-11,从而求得定点坐标.

解答:由(2k-1)x-(k+3)y-(k-11)=0,得:(2x-y)k-(x+3y)=k-11.不论k为何值,上式都成立.所以2x-y=1,x+3y=11,解得:x=2,y=3.即不论k为何值,一次函数(2k-1)x-(k+3)y-(k-11)=0的图象恒过(2,3).

点评:恒过一个定点,那么应把所给式子重新分配整理成左右都含k的等式.
以上问题属网友观点,不代表本站立场,仅供参考!