某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用为每日115元,根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数y关于x的表达式及其x的范围;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?(必要时可参考以下数据282=784,292=841)
网友回答
解:(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3.
∵x∈N,∴x≥3,∴3≤x≤6,且x∈N.
当6<x≤20时,y=[50-3(x-6)]x-115=-3x2+68x-115
综上可知 y=,
(2)当3≤x≤6,且x∈N时,∵y=50x-115是增函数,
∴当x=6时,ymax=185元.
当6<x≤20,x∈N时,y=-3x2+68x-115=,
∴当=11时,ymax=270元.
综上所述,当每辆自行车日租金定在11元时才能使日净收入最多,为270元.
解析分析:(1)函数y=f(x)=出租自行车的总收入-管理费;当x≤6时,全部租出;当6<x≤20时,每提高1元,租不出去的就增加3辆;所以要分段求出解析式;
(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.
点评:本题用分段函数模型考查了一次函数,二次函数的性质与应用,解决问题的关键是弄清题意,分清收费方式.