已知数列{an}的通项为an=(2n-1)?2n,求其前n项和Sn时,我们用错位相减法,即
由Sn=1?2+3?22+5?23+…+(2n-1)?2n得2Sn=1?22+3?23+5?24+…+(2n-1)?2n+1
两式相减得-Sn=2+2?22+2?23+…+2?2n-(2n-1)?2n+1,
求出Sn=2-(2-2n)?2n+1.类比推广以上方法,若数列{bn}的通项为bn=n2?2n,则其前n项和Tn=________.
网友回答
(n2-2n+3)?2n+1-6
解析分析:类比题设中“错位相减法”,先得出Tn=1×2+4×22+9×23+…n2?2n及两边同乘2后得2Tn=1×22+4×23+9×24+…n2?2n+1再两式相减,正好求得Tn=-Sn+n2?2n+1进而得到