如图,AB是⊙O的直径,点A、C、D在⊙O上,过D作PF∥AC交⊙O于F、交AB于E,且∠BPF=∠ADC.
(1)判断直线BP和⊙O的位置关系,并说明你的理由;
(2)当⊙O的半径为,AC=2,BE=1时,求BP的长.
网友回答
(1)解:直线BP和⊙O相切,
理由:连接BC,
∵AB是⊙O直径,
∴∠ACB=90°,
∵PF∥AC,
∴BC⊥PF,
则∠PBC+∠BPF=90°,
∵∠BPF=∠ADC,∠ADC=∠ABC,
∴∠BPF=∠ABC,
∴∠PBC+∠ABC=90°,
即∠PBA=90°,
∵AB是直径,
∴直线BP和⊙O相切;
(2)解:由已知,得∠ACB=90°,
∵AC=2,AB=2,
∴由勾股定理得:BC=4,
∵∠BPF=∠ADC,∠ADC=∠ABC,
∴∠BPF=∠ABC,
由(1),得∠ABP=∠ACB=90°,
∴△ACB∽△EBP,
∴=,
解得BP=2,
即BP的长为2.
解析分析:(1)连接BC,求出∠ACB=90°,根据PF∥AC,推出BC⊥PF,求出∠PBC+∠BPF=90°,求出∠PBC+∠ABC=90°,根据切线的判定推出即可;(2)根据勾股定理求出BC,证△ABC和△BEP相似,得出比例式,即可求出BP.
点评:本题考查了圆周角定理、勾股定理、相似三角形的性质和判定、切线的判定的应用,能综合运用定理进行推理和计算是解此题的关键.