解答题设集合A={x|0≤x-m≤3},B={x|x<0或x>3},A∩B=A,求实数

发布时间:2020-07-09 07:19:04

解答题设集合A={x|0≤x-m≤3},B={x|x<0或x>3},A∩B=A,求实数m的取值范围.

网友回答

解:A={x|0≤x-m≤3}={x|m≤x≤m+3},
∵A∩B=A,
∴A?B,
∴m>3或m+3<0,
∴m>3或m<-3.
实数m的取值范围m>3或m<-3.解析分析:先求出不等式0≤x-m≤3的解集就是A,根据A∩B=A?A?B和端点值的关系列出不等式组进行求解,求出m的范围.点评:本题考查了交集、并集的运算和子集的转换,根据A∪B=A得B?A,再由集合中的不等式得到端点值的关系,进而列出不等式进行求解.
以上问题属网友观点,不代表本站立场,仅供参考!