设数列a1,a2,…,an,…满足a1=a2=1,a3=2,且对任何自然数n,都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+

发布时间:2020-08-04 14:00:09

设数列a1,a2,…,an,…满足a1=a2=1,a3=2,且对任何自然数n,都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,则a1+a2+…+a100的值是________.

网友回答

200

解析分析:由anan+1an+2an+3=an+an+1+an+2+an+3?可得an+1an+2an+3an+4=an+1+an+2+an+3+an+4相减可得an+4=an,再由已知可推得数列为,1,1,2,4循环出现,故可求解a1+a2+…+a100的值

解答:∵对任何自然数n,都有anan+1an+2an+3=an+an+1+an+2+an+3? ①∴an+1an+2an+3an+4=an+1+an+2+an+3+an+4,②②-①,得anan+1an+2(an+4-an)=an+4-an,即(an+4-an)(anan+1an+2-1)=0由已知anan+1an+2≠1,即anan+1an+2-1≠0,只能an+4-an=0,即得an+4=an.又anan+1an+2an+3=an+an+1+an+2+an+3,a1=a2=1,a3=2,得a4=4.故数列为,1,1,2,4的循环出现∴a1+a2+…+a100=25(1+1+2+4)=200.故
以上问题属网友观点,不代表本站立场,仅供参考!