已知等差数列{an}的前n项和为Sn,首项为1的等比数列{bn}的公比为q,S2=a3=b3,且a1,a3,b2成等比数列.
(1)求{an}和{bn}的通项公式;
(2)设数列{bn}的前n项和为Tn,若2Sn-nan=b+loga(2Tn+1)对一切正整数n成立,求实数a,b的值.
网友回答
解:(1)设等差数列{an}的公差为d,
由S2=a3,得2a1+d=a1+2d,故有a1=d.
由a3=b3,得,故有.①
由a1,a3,b4成等差数列,得,故有.②
由①②解得a1=3,q=3,
∴an=3+(n-1)?3=3n,.
(2)∵,
,
若2Sn-nan=b+loga(2Tn+1)对一切正整数n成立,
则3n=b+nloga3,
∴,解得a=,b=0.
解析分析:(1)设等差数列{an}的公差为d,由S2=a3,得2a1+d=a1+2d,故有a1=d.由a3=b3,得,故有.由a1,a3,b4成等差数列,得,故有.由此能求出{an}和{bn}的通项公式.(2)由,,知若2Sn-nan=b+loga(2Tn+1)对一切正整数n成立,则3n=b+nloga3,由此能求出实数a,b的值.
点评:本题考查等差数列和等比数列的性质和应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,尤其是恒成立问题的转化.