已知点P为双曲线的右支上一点,F1、F2为双曲线的左、右焦点,若,且△PF1F2的面积为2ac(c为双曲线的半焦距),则双曲线的离心率为A.+1B.+1C.+1D.+1
网友回答
A
解析分析:先由得出△F1PF2是直角三角形得△PF1F2的面积,再把等量关系转化为用a,c来表示即可求双曲线C的离心率.
解答:先由得出:△F1PF2是直角三角形,△PF1F2的面积=b2cot45°=2ac从而得c2-2ac-a2=0,即e2-2e-1=0,解之得e=1±,∵e>1,∴e=1+.故选:A.
点评:本题是对双曲线性质中离心率的考查.求离心率,只要找到a,c之间的等量关系即可求,是基础题.