如图,边长为1的正方形ABCD绕点A逆时针旋转得到正方形A′B′C′D′,,则图中阴影部分的面积为A.B.C.D.

发布时间:2020-07-30 04:36:15

如图,边长为1的正方形ABCD绕点A逆时针旋转得到正方形A′B′C′D′,,则图中阴影部分的面积为A.B.C.D.

网友回答

D

解析分析:设B′C′与CD交于点E.由于阴影部分的面积=S正方形ABCD-S四边形AB′ED,又S正方形ABCD=1,所以关键是求S四边形AB′ED.为此,连接AE.根据HL易证△AB′E≌△ADE,得出∠B′AE=∠DAE=30°.在直角△ADE中,由正切的定义得出DE=AD?tan∠DAE=.再利用三角形的面积公式求出S四边形AB′ED=2S△ADE.

解答:解:设B′C′与CD交于点E,连接AE.在△AB′E与△ADE中,∠AB′E=∠ADE=90°,∵,∴△AB′E≌△ADE(HL),∴∠B′AE=∠DAE.∵∠BAB′=30°,∠BAD=90°,∴∠B′AE=∠DAE=30°,∴DE=AD?tan∠DAE=.∴S四边形AB′ED=2S△ADE=2××1×=.∴阴影部分的面积=S正方形ABCD-S四边形AB′ED=1-,故选D.

点评:本题主要考查了正方形、旋转的性质,直角三角形的判定及性质,图形的面积以及三角函数等知识,综合性较强,有一定难度.
以上问题属网友观点,不代表本站立场,仅供参考!