已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB于D.求证:AC=AD.

发布时间:2020-07-29 16:09:49

已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB于D.
求证:AC=AD.

网友回答

证明:∵CE⊥AB,∠ACB=90°,
∴∠CEB=90°,
∴∠ACE+∠BCE=90°,∠B+∠BCE=90°,
∴∠B=∠ACE,
∵FD∥BC,
∴∠B=∠ADF=∠ACE,
∵AF平分∠CAB,
∴∠CAF=∠DAF,
在△ACF和△ADF中

∴△ACF≌△ADF,
∴AC=AD.
解析分析:求出∠ACE=∠B,根据平行线性质求出∠B=∠ADF=∠ACE,根据ASA证△ACF≌△ADF即可.

点评:本题考查了平行线性质,三角形的内角和定理,全等三角形的性质和判定的应用,关键是证出△ACF≌△ADF,主要培养了学生的推理能力.
以上问题属网友观点,不代表本站立场,仅供参考!