填空题在△ABC中,a比c长4,b比c长2,且最大角的余弦值是,则△ABC的面积等于_

发布时间:2020-07-09 07:04:12

填空题在△ABC中,a比c长4,b比c长2,且最大角的余弦值是,则△ABC的面积等于________.

网友回答

解析分析:由a比c长4,b比c长2,用c表示出a与b,可得出a为最大边,即A为最大角,可得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值求出A的度数,同时利用余弦定理表示出cosA,将表示出的a与b代入,并根据最大角的余弦值,得到关于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.解答:根据题意得:a=c+4,b=c+2,则a为最长边,∴A为最大角,又cosA=-,且A为三角形的内角,∴A=120°,而cosA===-,整理得:c2-c-6=0,即(c-3)(c+2)=0,解得:c=3或c=-2(舍去),∴a=3+4=7,b=3+2=5,则△ABC的面积S=bcsinA=.故
以上问题属网友观点,不代表本站立场,仅供参考!