已知函数f(x)=x3-ax2+(a2-1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y-3=0.
(1)求a,b的值;
(2)求函数f(x)的单调区间,并求出f(x)在区间[-2,4]上的最大值.
网友回答
解:(1)f′(x)=x2-2ax+a2-1,
∵(1,f(1))在x+y-3=0上,
∴f(1)=2,
∵(1,2)在y=f(x)上,
∴2=-a+a2-1+b,
又f′(1)=-1,
∴a2-2a+1=0,
解得a=1,b=.
(2)∵f(x)=x3-x2+,
∴f′(x)=x2-2x,
由f′(x)=0可知x=0和x=2是f(x)的极值点,所以有
x(-∞,0)0(0,2)2(2,+∞)f′(x)+0-0+f(x)增极大值减极小值增所以f(x)的单调递增区间是(-∞,0)和(2,+∞),单调递减区间是(0,2).
∵f(0)=,f(2)=,f(-2)=-4,f(4)=8,
∴在区间[-2,4]上的最大值为8.
解析分析:(1)根据导数的几何意义求出函数在x=1处的导数,从而得到切线的斜率,建立等式关系,再根据切点在函数图象建立等式关系,解方程组即可求出a和b,从而得到函数f(x)的解析式;(2)先求出f′(x)=0的值,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数求闭区间上函数的最值等基础题知识,考查运算求解能力,考查数形结合思想,属于基础题.