已知向量a=(cosα,-2),b=(sinα,1),且a∥b,则tan等于A.3B.-3C.D.
网友回答
B
解析分析:根据两个向量共线的充要条件,得到关于三角函数的等式,等式两边同时除以cosα,得到角的正切值,把要求的结论用两角差的正切公式展开,代入正切值,得到结果.
解答:∵,∴cosα+2sinα=0,∴tanα=,∴tan()==-3,故选B
点评:向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视.本题是把向量同三角函数结合的问题.