把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.1.找出图中的全等三角

发布时间:2021-02-26 22:58:00

把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.1.找出图中的全等三角形不证明2.三角形DEF是什么三角形,证明3.连接BE,判断四边形BEDF是什么四边形,BD与DF什么关系,证明

网友回答

1、图中.△DEF与△BEF全等
2、△DEF是等腰三角形
证明:矩形ABCD按如图方式折叠,使顶点B和点D重合,折痕为EF.
则点B、D对称于EF,BF轴对称于DF,BF=DF,∠BFE=∠DFE
∵ABCD为矩形,
∴AD∥BC
∴∠BFE=∠DEF
∴∠DFE=∠DEF
∴△DEF是等腰三角形,DE=DF
3、四边形ABCD是等边棱形,BD²=2DF*BC
证明:∵点B、D对称于EF
∴△DEF与△BEF全等
∵△DEF是等腰三角形,DE=DF
∴△BEF是等腰三角形,BE=BF
且BE=BF=DE=DF
∴四边形ABCD是等边棱形
设BD与EF相交于O
则△BEO相似于△BDC,且BO=OD=BD/2
∴BF/BO=BD/BC
∵BF=DF
∴DF/(BD/2)=BD/BC
∴BD²=2DF*BC
以上问题属网友观点,不代表本站立场,仅供参考!