解答题如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.
(Ⅰ)求证:AM⊥平面EBC;
(Ⅱ)求直线AB与平面EBC所成的角的大小;
(Ⅲ)求二面角A-EB-C的大小.
网友回答
解:(Ⅰ)证明:∵四边形ACDE是正方形,
∴EA⊥AC,AM⊥EC.???…(1分)
∵平面ACDE⊥平面ABC,
又∵BC⊥AC,∴BC⊥平面EAC.…(3分)
∵AM?平面EAC,∴BC⊥AM.?…(4分)
∴AM⊥平面EBC.??
?(Ⅱ)连接BM,
∵AM⊥平面EBC,∴∠ABM是直线AB与平面EBC所成的角.????????????…(5分)
设EA=AC=BC=2a,则,,…(6分)
∴,∴∠ABM=30°.
即直线AB与平面EBC所成的角为30°.???…(8分)
(Ⅲ)过A作AH⊥EB于H,连接HM.????…(9分)
∵AM⊥平面EBC,∴AM⊥EB.
∴EB⊥平面AHM.∴∠AHM是二面角A-EB-C的平面角.?…(10分)
∵平面ACDE⊥平面ABC,∴EA⊥平面ABC.∴EA⊥AB.
在Rt△EAB中,AH⊥EB,有AE?AB=EB?AH.
由(Ⅱ)所设EA=AC=BC=2a可得,,∴.?????????????…(12分)∴.∴∠AHM=60°.
∴二面角A-EB-C等于60°.???????????…(14分)解析分析:(Ⅰ)要证AM⊥平面EBC,关键是寻找线线垂直,利用四边形ACDE是正方形,可得AM⊥EC.利用平面ACDE⊥平面ABC,BC⊥AC,可得BC⊥平面EAC,从而有BC⊥AM.故可证?(Ⅱ)要求直线AB与平面EBC所成的角,连接BM,根据AM⊥平面EBC,可知∠ABM是直线AB与平面EBC所成的角,故可求.???????????(Ⅲ)先最初二面角A-EB-C的平面角.?再在Rt△EAB中,利用AH⊥EB,有AE?AB=EB?AH.由(Ⅱ)所设EA=AC=BC=2a可得,,∴.从而可求二面角A-EB-C的平面角.点评:本题以面面垂直为载体,考查线面垂直,考查线面角,面面角,关键是作、证、求.