设函数φ)(0<φ<π),且f(x)+f′(x)为奇函数.
(1)求φ的值;
(2)求f(x)+f′(x)的最值.
网友回答
解:(1)f(x)+f'(x)==,
又f(x)+f'(x)是奇函数,
∴f(0)+f'(0)=0,又0<φ<π,
∴φ=.
(2)由(1)得f(x)+f'(x)=.
∴f(x)+f'(x)的最大值为2,最小值为-2.
解析分析:(1)由已知利用辅助角公式可得,f(x)+f'(x)==,由f(x)+f'(x)为奇函数,根据奇函数的性质可得,f(0)+f'(0)=0,从而可求φ的值(2)由(1)得f(x)+f'(x)=.,根据正弦函数的性质可求最值
点评:本题主要考查了奇函数的性质:若函数g(x)为奇函数,且0在定义域内,则g(0)=0,利用该性质可以简化运算;三角函数的辅助角公式 的应用,正弦函数的最值的求解.