椭圆与直线y=x+1交于P,Q两点?且,a2+b2=2a2b2.求椭圆方程.

发布时间:2020-07-31 20:12:41

椭圆与直线y=x+1交于P,Q两点?且,a2+b2=2a2b2.求椭圆方程.

网友回答

解:把直线y=x+1代入椭圆,
得b2x2+a2(x+1)2=a2b2,
∴(a2+b2)x2+2a2x+a2=a2b2,
∵a2+b2=2a2b2,
∴2a2b2x2+2a2x+a2=a2b2,
∴2b2x2+2x+1-b2=0,
设P(x1,y1),Q(x2,y2),
则,k=1,
∴|PQ|=
=
=,
解得b2=2或.
当b2=2时,由a2+b2=2a2b2,解得a2=(舍)
当时,由a2+b2=2a2b2,解得a2=2.
∴椭圆方程为:.
解析分析:把直线y=x+1代入椭圆,得b2x2+a2(x+1)2=a2b2,所以(a2+b2)x2+2a2x+a2=a2b2,由a2+b2=2a2b2,得2b2x2+2x+1-b2=0,设P(x1,y1),Q(x2,y2),则,k=1,故|PQ|==,由此能求出椭圆方程.

点评:本题考查直线与椭圆的位置关系,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
以上问题属网友观点,不代表本站立场,仅供参考!