在正三棱柱ABC-A1B1C1中,已知AB=1,点D在棱BB1上,且BD=1,则AD与平面AA1CC1所成角的正切值为A.B.1C.D.

发布时间:2020-07-31 19:00:51

在正三棱柱ABC-A1B1C1中,已知AB=1,点D在棱BB1上,且BD=1,则AD与平面AA1CC1所成角的正切值为A.B.1C.D.

网友回答

D
解析分析:根据题意画出图形,过B作BF⊥AC,过B1作B1E⊥A1C1,连接EF,过D作DG⊥EF,连接AG,证明DG⊥面AA1C1C,∠DAG=α,解直角三角形ADG即可.

解答:解:如图所示,过B作BF⊥AC,过B1作B1E⊥A1C1,连接EF,过D作DG⊥EF,连接AG,在正三棱柱中,有B1E⊥面AA1C1C,BF⊥面AA1C1C,故DG⊥面AA1C1C,∴∠DAG=α,可求得DG=BF=,AG=,故tanα=?????故选D.

点评:考查直线和平面所成的角,关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属基础题.
以上问题属网友观点,不代表本站立场,仅供参考!