关于x的方程(2-a)x2+5x-3=0有实数根,则整数a的最大值是A.1B.2C.3D.4
网友回答
D
解析分析:由于关于x的方程(2-a)x2+5x-3=0有实数根,分情况讨论:①当2-a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2-a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此可以确定整数a的最大值.
解答:∵关于x的方程(2-a)x2+5x-3=0有实数根,∴①当2-a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2-a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,∴△=25+12(2-a)≥0,解之得a≤,∴整数a的最大值是4.故选D.
点评:本题考查了一元二次方程根的判别式的应用.一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.注意次方程应分是一元二次方程与不是一元二次方程两种情况进行讨论.