如图,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点.线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.则大致反映S与t变化关系的图象是A.B.C.D.
网友回答
A
解析分析:利用直角梯形的面积公式,由MN=1不变,可知四边形MNQP的面积随(PM+QN)的变化而变化,找到特殊点过点C作CG⊥AB,可分析得出四边形MNQP的面积变化情况.
解答:解:过点C作CG⊥AB,∵MN=1,四边形MNQP为直角梯形,∴四边形MNQP的面积为S=MN×(PM+QN),∴N点从A到G点四边形MNQP的面积为S=MN×(PM+QN)中,PM,QN都在增大,所以面积也增大;当QN=CG时,QN开始减小,但PM仍然增大,且PM+QN不变,∴四边形MNQP的面积不发生变化,当PM<CG时,PM+QN开始减小,∴四边形MNQP的面积减小,∴符合要求的只有A.故选A.
点评:此题主要考查了直角梯形的面积求法,以及动点函数的应用,由动点找特殊点,是解决问题的关键.