对于向量a,b,定义a×b为向量a,b的向量积,其运算结果为一个向量,且规定a×b的模|a×b|=|a||b|sinθ(其中θ为向量a与b的夹角),a×b的方向与向量a,b的方向都垂直,且使得a,b,a×b依次构成右手系.如图,在平行六面体ABCD-EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,则=A.4B.8C.D.
网友回答
D
解析分析:根据题意和向量积定义,判断出向量的方向且垂直平面ABCD,由数量积的运算需要求出向量和所成角θ的余弦值,即由题意作EI⊥AC于I,则<AEI=θ,过I作IJ⊥AD于J,连EJ,由三垂线逆定理可得EJ⊥AD,在直角三角形求出cosθ的值和向量的模,最后代入向量积和数量积定义求解.
解答:解:据向量积定义知,向量垂直平面ABCD,且方向向上,设与所成角为θ.∵∠EAB=∠EAD=∠BAD=60°,∴点E在底面ABCD上的射影在直线AC上.作EI⊥AC于I,则EI⊥面ABCD,∴θ+∠EAI=.过I作IJ⊥AD于J,连EJ,由三垂线逆定理可得EJ⊥AD.∵AE=2,∠EAD=60°,∴AJ=1,EJ=.又∵∠CAD=30°,IJ⊥AD,∴AI=.∵AE=2,EI⊥AC,∴cos∠EAI==.∴sinθ==cos∠EAI=,cosθ=.故=||||sin∠BAD||cosθ=8××=,故选D.
点评:本题是新定义题目,需要抓住新定义中的本质找到解题的关键点,即的方向和具体位置,根据图形和条件作出并加以证明,还需要利用几何知识和向量数量积的运算进行求解,考查分析问题和解决问题的能力.