在平面直角坐标系xOy中,点P在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q在x轴上,若点R的坐标为R(2,2),则QP+QR的最小值为A

发布时间:2020-07-30 15:42:39

在平面直角坐标系xOy中,点P在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q在x轴上,若点R的坐标为R(2,2),则QP+QR的最小值为A.B.C.D.4

网友回答

A
解析分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR的值即可.

解答:解:当点P在直线y=-x+3和x=1的交点上时,作P关于x轴的对称点P′,连接P′R,交x轴于Q,此时PQ+QR最小,连接PR,∵PR=1,PP′=4,∴P′R==,∴QP+QR的最小值为.故选A.

点评:本题主要考查了一次函数综合问题,在解题时要能画出图形确定出Q点的位置是本题的关键,是一道常考题.
以上问题属网友观点,不代表本站立场,仅供参考!