已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.(1)探索EG、CG的数量关系和位置关

发布时间:2020-08-10 05:07:07

已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.
(1)探索EG、CG的数量关系和位置关系并证明;
(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;
(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.

网友回答

解:(1)EG=CG且EG⊥CG.
证明如下:如图①,连接BD.
∵正方形ABCD和等腰Rt△BEF,
∴∠EBF=∠DBC=45°.
∴B、E、D三点共线.
∵∠DEF=90°,G为DF的中点,∠DCB=90°,
∴EG=DG=GF=CG.
∴∠EGF=2∠EDG,∠CGF=2∠CDG.
∴∠EGF+∠CGF=2∠EDC=90°,
即∠EGC=90°,
∴EG⊥CG.

(2)仍然成立,
证明如下:如图②,延长EG交CD于点H.
∵BE⊥EF,∴EF∥CD,∴∠1=∠2.
又∵∠3=∠4,FG=DG,
∴△FEG≌△DHG,
∴EF=DH,EG=GH.
∵△BEF为等腰直角三角形,
∴BE=EF,∴BE=DH.
∵CD=BC,∴CE=CH.
∴△ECH为等腰直角三角形.
又∵EG=GH,
∴EG=CG且EG⊥CG.

(3)仍然成立.
证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.
∵GF=GD,∠HGF=∠CGD,HG=CG,
∴△HFG≌△CDG,
∴HF=CD,∠GHF=∠GCD,
∴HF∥CD.
∵正方形ABCD,
∴HF=BC,HF⊥BC.
∵△BEF是等腰直角三角形,
∴BE=EF,∠EBC=∠HFE,
∴△BEC≌△FEH,
∴HE=EC,∠BEC=∠FEH,
∴∠BEF=∠HEC=90°,
∴△ECH为等腰直角三角形.
又∵CG=GH,
∴EG=CG且EG⊥CG.

解析分析:(1)首先证明B、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG=GF=CG,得到∠EGF=2∠EDG,∠CGF=2∠CDG,从而证得∠EGC=90°;
(2)首先证明△FEG≌△DHG,然后证明△ECH为等腰直角三角形.可以证得:EG=CG且EG⊥CG.
(3)首先证明:△BEC≌△FEH,即可证得:△ECH为等腰直角三角形,从而得到:EG=CG且EG⊥CG.

点评:本题主要考查了旋转的性质,根据旋转的性质证得三角形全等是解题的关键,解题过程中要注意前后之间的联系,在变化过程中找到不变的关系.
以上问题属网友观点,不代表本站立场,仅供参考!