如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A的坐标为(m,0).将正方形OABC绕点O逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M与B、C不重合.
(1)请判断线段CD与OM的位置关系,其位置关系是______;
(2)试用含m和α的代数式表示线段CM的长:______;α的取值范围是______.
网友回答
解:(1)连接CD,OM.
根据旋转的性质可得,MC=MD,OC=OD,又OM是公共边,
∴△COM≌△DOM,
∴∠COM=∠DOM,
又∵OC=OD,
∴CD⊥OM;
(2)由(1)知∠COM=∠DOM,
∴∠COM=,
在Rt△COM中,CM=OC?tan∠COM=m?tan;
因为OD与OM不能重合,且只能在OC右边,故可得α的取值范围是0°<α<90°.
解析分析:(1)连接CD,OM.根据旋转的性质得出MC=MD,OC=OD,再证明△COM≌△DOM,得出∠COM=∠DOM,然后根据等腰三角形三线合一的性质得出CD⊥OM;
(2)首先用含α的代数式表示∠COM,然后在Rt△COM中,根据正切函数的定义即可得出CM的长度;由OD与OM不能重合,且只能在OC右边,得出α的取值范围.
点评:解答本题要充分利用正方形的特殊性质,注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,有助于提高解题速度和准确率.