若在三角形ABC中A=60°,b=1,SABC=√3,则(a+b+c)/(sinA+sinB+sin

发布时间:2021-03-16 02:13:54

若在三角形ABC中A=60°,b=1,SABC=√3,则(a+b+c)/(sinA+sinB+sinC)=

网友回答

计算得c=4
b=根号13
(a+b+c)/(sinA+sinB+sinC)=b/sinB=2根号39/3
======以下答案可供参考======
供参考答案1:
SABC=bc×sinA/2=√3c/4=√3
c=4 a^2=b^2+c^2-2bc×cosA=13
a=√13(a+b+c)/(sinA+sinB+sinC)
= (2RsinA+2RsinB+2RsinC)/(sinA+sinB+sinC)
= 2R = a/sinA
= √13/(√3/2)
= 2√39/3
供参考答案2:
bcsinA=2S
c=4a^2=b^2+c^2-2bccosA=13
a=√13由合比定理和正弦定理
a/sinA=b/sinB=c/sinC=(a+b+c)/(sinA+sinB+sinC)
所以(a+b+c)/(sinA+sinB+sinC)
=a/sinA
=√13/(√3/2)
=2√39/3
以上问题属网友观点,不代表本站立场,仅供参考!