已知函数f(x)=x2+px+q和g(x)=x+都是定义在A{x|1≤x≤}上,对任意的x∈A,存在常数x0∈A,使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则f(x)在A上的最大值为
A.
B.
C.5
D.
网友回答
C解析分析:由已知很容易得到函数g(x)=x+?在区间[1,]上的最小值为g(2)=4,于是函数f(x)=x2+px+q也在x=2处取到最小值f(2),下面只需代入数值即可求解.解答:由已知函数f(x)=x2+px+q和g(x)=x+在区间[1,]上都有最小值f(x0),g(x0),又因为g(x)=x+?在区间[1,]上的最小值为g(2)=4,f(x)min=f(2)=g(2)=4,所以得:,即:所以得:f(x)=x2-4x+8≤f(1)=5.故选C.点评:本题考查函数的单调性,利用单调性求解函数在区间上最值的方法,考查二次函数,对勾函数等函数型的性质;考查函数与方程,转化与化归等数学思想方法.