已知函数f(x)=xln(ax)+ex-1在点(1,0)处的切线经过椭圆4x2+my2=4m的右焦点,则椭圆的离心率为
A.
B.
C.
D.
网友回答
B解析分析:求出函数的导函数,把x=1代入导函数求出的函数值即为切线方程的斜率,把x=1代入函数解析式中得到切点的纵坐标,进而确定出切点坐标,根据求出的斜率和切点坐标写出切线方程求得m,从而求得椭圆的离心率即可.解答:由题意得:y′=ln(ax)+1+ex-1,把x=1代入得:y′|x=1=lna+2,即切线方程的斜率k=lna+2,且把x=1代入函数解析式得:y=lna+1=0,即a=,则所求切线方程为:y-1=x,即y=x+1.则椭圆4x2+my2=4m的焦点为(1,0)∴c2=m-4=1,m=5∴故选B.点评:此题考查椭圆的简单性质、学生会利用导数求曲线上过某点切线方程的斜率,是一道基础题.