如图,在矩形ABCD中,AB=6,AD=8,将BC沿对角线BD对折,C点落在E点上,BE交AD于F,则AF的长为________.
网友回答
解析分析:先由长方形的性质可知,AB=CD,BE=BC,再根据图形翻折变换的性质可知,CD=DE=AB,利用全等三角形的判定定理可得△ABF≌△EDF,故BF=DF,AF+BF=AD,设AF=x,由勾股定理即可求出x的值.
解答:∵四边形ABCD是长方形,AB=6,AD=8,∴AB=CD=6,AD=BC=8,∵△BED是△BCD沿BD翻折而成,∴CD=DE=AB=6,∠E=90°,∴△ABF≌△EDF,∴BF=DF,AF+BF=AD=8,在Rt△ABF中,设AF=x,则BF=8-x,由勾股定理得BF2=AB2+AF2,即(8-x)2=62+x2,解得x=.故