如图,平行四边形ABCD中,AE⊥BC,AF⊥DC,AB:AD=2:3,∠BAD=2∠ABC,则CF:FD的结果为A.1:2B.1:3C.2:3D.3:4
网友回答
B
解析分析:由平行四边形的性质得∠BAD+∠ABC=180°,结合已知∠BAD=2∠ABC,可推出特殊直角三角形,确定FD与AD的关系,再由AB=CD及已知AB:AD=2:3,确定CD与AD的关系,用CF=CD-DF,求CF:FD.
解答:∵AD∥BC,∴∠BAD+∠ABC=180°,又∠BAD=2∠ABC,∴∠BAD=120°,∠ABC=60°.根据平行四边形的对角相等,得:∠D=∠ABC=60°,在Rt△AFD中,根据30°所对的直角边是斜边的一半,得:DF=AD,又AB:AD=2:3,则CD=AD,CF=CD-DF=AD,故CF:FD=:=1:3.故选B.
点评:本题考查了平行四边形的性质,运用了平行四边形的邻角互补、平行四边形的对角相等、平行四边形的对边相等的性质.