抛物线y=3x2,y=-3x2,y=x2+1共有的性质是A.开口向上B.对称轴是y轴C.顶点坐标都是(0,0)D.在对称轴的右侧y随x的增大而增大
网友回答
B
解析分析:根据二次函数的性质解题.
解答:①y=3x2,开口向上,对称轴是y轴,顶点坐标都是(0,0),对称轴的右侧y随x的增大而增大;②y=-3x2,开口向下,对称轴是y轴,顶点坐标都是(0,0),对称轴的右侧y随x的增大而减小;③y=x2+1开口向上,对称轴是y轴,顶点坐标都是(0,1),对称轴的右侧y随x的增大而增大.故选B.
点评:主要考查了二次函数的性质.二次函数y=ax2+bx+c(a,b,c为常数,a≠0),a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下.|a|还可以决定开口大小,|a|越大开口就越小;|a|越小开口就越大.