如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是A.6B.

发布时间:2020-07-30 12:27:21

如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是A.6B.8C.9.6D.10

网友回答

C
解析分析:如图,设GH的中点为O,过O点作OM⊥AC,过B点作BH⊥AC,垂足分别为M、H,根据∠B=90°可知,点O为过B点的圆的圆心,OM为⊙O的半径,BO+OM为直径,可知BH<BO+OH,故当BH为直径时,直径的值最小,即直径GH也最小,同理可得EF的最小值.

解答:如图,设GH的中点为O,过O点作OM⊥AC,过B点作BN⊥AC,垂足分别为M、N,在Rt△ABC中,BC=8,AB=6,∴AC==10,由面积法可知,BN?AC=AB?BC,解得BN=4.8,∵∠B=90°,∴点O为过B点的圆的圆心,OM为⊙O的半径,BO+OM为直径,又∵BO+OM≥BN,∴当BN为直径时,直径的值最小,此时,直径GH=BN=4.8,同理可得:EF的最小值为4.8,∴EF+GH的最小值是9.6.故选C.

点评:本题考查了切线的性质,垂线的性质及勾股定理的运用.关键是明确EF、GH为两圆的直径,根据题意确定直径的最小值.
以上问题属网友观点,不代表本站立场,仅供参考!