如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.
(1)判断OG与CD的位置关系,写出你的结论并证明.
(2)求证:AE=BF.
网友回答
(1)猜想:OG⊥CD.
证明:如图,连接OC、OD.
∵OC=OD,G是CD的中点,
∴由等腰三角形的性质,有OG⊥CD.(3分)
(2)证明:∵AB是⊙O的直径,∴∠ACB=90°
而∠CAE=∠CBF(同弧所对的圆周角相等).
在Rt△ACE和Rt△BCF中,
∵∠ACE=∠BCF=90°,AC=BC,∠CAE=∠CBF,
∴△ACE≌△BCF(ASA)
∴AE=BF.(12分)
解析分析:(1)连接OC、OD.利用等腰三角形的“三线合一”的性质来判定OG⊥CD;(2)根据圆周角定理推知:∠ACB=90°、∠CAE=∠CBF;然后通过全等三角形的判定定理ASA来证明Rt△ACE≌Rt△BCF,由全等三角形的对应边相等知AE=BF.
点评:本题综合考查了等腰三角形的性质、圆周角定理、全等三角形的判定与性质.在圆中,常见的辅助线之一:构造直径所对的圆周角.