多项式乘多项式方法,什么是多项式
网友回答
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
由多项式乘多项式法则可以得到(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd
上面的运算过程,也可以表示为(a+b)(c+d)=ac+ad+bc+bd
多项式乘以多项式就是利用乘法分配律法则得出的。
扩展资料:
一、多项式的加法和乘法
有限的单项式之和称为多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。
多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。
F上x1,x2,…,xn的多项式全体所成的集合Fx{1,x2,…,xn},对于多项式的加法和乘法成为一个环,是具有单位元素的整环。
域上的多元多项式也有因式分解惟一性定理。
二、相关应用
给出多项式 f∈R[x1,...,xn] 以及一个 R-代数 A。对 (a1,...,an)∈An,我们把 f 中的 xj 都换成 aj,得出一个 A 中的元素,记作 f(a1...an)。如此, f 可看作一个由 An 到 A 的函数。
若然 f(a1...an)=0,则 (a1...an) 称作 f 的根或零点。
例如 f=x^2+1。若然考虑 x 是实数、复数、或矩阵,则 f 会无根、有两个根、及有无限个根!
例如 f=x-y。若然考虑 x 是实数或复数,则 f 的零点集是所有 (x,x) 的集合,是一个代数曲线。事实上所有代数曲线由此而来。
另外,若所有系数为实数多项式 P(x)有复数根Z,则Z的共轨复数也是根。
若P(x)有n个重叠的根,则 P‘(x) 有n-1个重叠根。即若 P(x)=(x-a)^nQ(x),则有 a 是 P’(x)的重叠根且有n-1个。
参考资料来源:百度百科-多项式
参考资料来源:百度百科-多项式乘多项式法则
网友回答
多项式 polynomial
若干个单项式的和组成的式叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。不含字母的项叫做常数项。如一式中:最高项的次数为5,此式有3个单项式组成,则称其为:五次三项式。
比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起的定理:0作为多项式时,次数为负无穷大。
编辑本段多项式历史
多项式的研究,源于“代数方程求解”, 是最古老数学问题之一。有些代数方程,如x+1=0,在负数被接受前,被认为是无解的。另一些多项式,如f(x)=x² + 1,是没有任何根的——严格来说,是没有任何实数根。若我们容许复数,则实数多项式或复数多项式都是有根的,这就是代数基本定理。
能否用根式求解的方法,表达出多项式的根,曾经是文艺复兴后欧洲数学主要课题。一元二次多项式的根相对容易。三次多项式的根需要引入复数来表示,即使是实数多项式的实数根。四次多项式的情况也是如此。经过多年,数学家仍找不到用根式求解五次多项式的一般方法,终于在1824年阿贝尔证明了这种一般的解法不存在,震撼数坛。数年后,伽罗华引入了群的概念,证明不存在用根式求解五次或以上的多项式的一般方法,其理论被引申为伽罗瓦理论。伽罗瓦理论也证明了古希腊难题三等分角不可能。另一个难题化圆为方的不可能证明,亦与多项式有关,证明的中心是圆周率乃一个超越数,即它不是有理数多项式的根。
编辑本段多项式函数及多项式的根
给出多项式 f∈R[x1,...,xn] 以及一个 R-代数 A。对 (a1...an)∈An,我们把 f 中的 xj 都换成 aj,得出一个 A 中的元素,记作 f(a1...an)。如此, f 可看作一个由 An 到 A 的函数。
若然 f(a1...an)=0,则 (a1...an) 称作 f 的根或零点。
例如 f=x2+1。若然考虑 x 是实数、复数、或矩阵,则 f 会无根、有两个根、及有无限个根!
例如 f=x-y。若然考虑 x 是实数或复数,则 f 的零点集是所有 (x,x) 的集合,是一个代数曲线。事实上所有代数曲线由此而来。
编辑本段代数基本定理
代数基本定理是指所有一元 n 次(复数)多项式都有 n 个(复数)根。
编辑本段多项式的几何特性
多项式是简单的连续函数,它是平滑的,它的微分也必定是多项式。
泰勒多项式的精神便在于以多项式逼近一个平滑函数,此外闭区间上的连续函数都可以写成多项式的均匀极限。
编辑本段任意环上的多项式
多项式可以推广到系数在任意一个环的情形,请参阅条目多项式环。参考资料:http://baike.baidu./view/613580.htm